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Introduction 
 

In India, the agriculture sector includes 

forestry and fishing is the main stay of the 

economy, contributing about 17% of the GDP 

and accounting for about 53% of 

employments. Under the purview of 

agriculture and allied activities in agriculture 

has become 33%. The share of plan outlay for 

horticulture which was 3.9% during the IX 

plan, has increased to 4.6% during the XII 

plan. India has witnessed increase in 

horticulture production over the last few 

years. Significant progress has been made in 

area expansion resulting in higher production. 

Over the last decade, the area under 

horticulture grew by 2.6% per annum and 

annual production increased by 4.8%. During 

2017-18, the production of horticulture crops 

was 311.71 Million tonnes from an area of 
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Forecasting of vegetable arrivals and prices gain more significant because of 

its perishability and seasonality. Adequate information on prices and arrivals 

would bridge the gap between production and marketing. The secondary data 

regarding monthly arrivals (qtls) and prices (Rs/qtl) of tomato and onion were 

collected for a period of 8 years (2011-2018). Forecasting was done using 

SARIMA models for next 6 months. SARIMA (3, 0, 3) (3, 0, 2)12 and (2, 2, 2) 

(1, 0, 1)12 were the best model for forecasting the tomato arrivals and prices 

while SARIMA (1, 2, 3) (1, 2, 2)12 and (2, 0, 3) (2, 0, 3)12 were the best model 

for forecasting the onion arrivals and prices in Koyambedu (Chennai) market 

respectively. The actual and predicted values of vegetable arrivals and prices 

were similar to each other except tomato arrivals. Tomato arrivals were high in 

the month of February (106369 qtls) whereas peak prices (Rs 1966/qtl) were in 

the month of January. The peaks of onion arrivals (162534 qtls) were noticed 

in the Month of January whereas prices (Rs 4211 /qtl) were high in June 

among the forecasted values. 
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25.4 million hectares. The production of 

vegetables has increased from 101.2 million 

tonnes to 184.40 million tonnes since 2004-05 

to 2017-18 and production of fruits has 

increased from 50.9 million tonnes to 97.35 

million tonnes since 2004 to 2017-18 

(Horticulture Statistics at a Glance, 2018). 

 

The aim of this paper is to analyse the arrivals and 

price fluctuations of tomato and onion in 

Koyambedu market of Chennai using Seasonal 

Auto Regressive Moving Average (SARIMA) 

approach as the analysis tool. Vegetable 

arrivals and price analysis is used to formulate 

price stability policy and increased 

production. Accurate public information to 

farmers and market stakeholders like 

middlemen can inform policy forecasters to 

reduce price variance in other markets. The 

application of SARIMA as analyse tool can 

give an early warning message of tomato and 

onion price fluctuation in the future. 

 

Sampson et al., (2013) argued that among the 

seasonal decomposition models of 

forecasting, the SARIMA models could 

enable to forecast the price of tomatoes in 

Turkey and found SARIMA (1, 0, 0) (1, 1, 

1)12 model as the most suitable. They reported 

that the highest tomato prices seasonality 

adjusted were in October. Gathondu (2014) 

fitted four models to wholesale prices of 

major vegetables: tomato, potato, cabbages, 

Kales and onions for markets in Nairobi, 

Mombasa, Kisumu, Eldoret and Nakuru in 

Kenya using Autoregressive |Moving Average 

(ARMA), Vector Autoregressive (VAR), 

Generalized Autoregressive Condition 

Heterostadicity (GARCH) and the mixed 

model of ARMA and GARCH. In the study 

they found ARIMA (3, 1, 2) to be the best 

fitting model for tomatoes. The model failed 

to capture seasonal variability.  
 

Dragan et al., (2015) analysed the changes 

and future tendencies of the price of tomatoes 

with descriptive statistics and found that the 

ARIMA models were suitable for price 

forecasting. Mohan Naidu and Srikala (2015) 

Seasonal indices were observed that generally 

the prices were low from January to May and 

it raise from June, and reaches the maximum 

in November. Based on highest coefficient of 

multiple determination (R
2
) and Mean 

Absolute Percentage Error (MAPE), the 

estimated best model was Seasonal Auto 

Regressive Integrated Moving Average 

(SARIMA) (1,1,1) (1,0,0)12 short term 

forecasts based on this model were close to 

the observed values. 

 

Boatemg et al., (2017) found that the 

predictability of the model increased with 

SARIMA. They noted wide fluctuations in 

prices of tomatoes in different months, prices 

sometimes increase 10 times compared to 

prices during peak harvest periods which 

implied that if farmers plan their area under 

tomatoes properly, sowing dates and sales by 

considering forecasted prices from the 

ARIMA models to receive increased prices, 

earnings may increase at least three to four 

times with 90% predictability of the forecast 

accuracy. 

 

Materials and Methods 

 

Database 
 

The secondary data pertaining monthly 

arrivals (qtls) and wholesale prices (Rs/qtl) of 

tomato and onion were collected from various 

sources like Market Management committee – 

CMDA and Agmarknet for a period of 8 years 

(i.e. 2011-2018). 

 

Methodology 

 

SARIMA models are an adaptation of 

Autoregressive Integrated Moving Average 

(ARIMA) models to specifically fit seasonal 

time series. The seasonal ARIMA model 

incorporates non-seasonal and seasonal 

factors in a multiplicative model and is 
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denoted as: 

 

ARIMA (p, d, q)x(P, D, Q)S 

 

p = order of non- seasonal Auto Regressive 

(AR) order, d = order of non- seasonal 

difference, q = order of non- seasonal Moving 

Average (MA), P = order of seasonal Auto 

Regressive (SAR), D = order of seasonal 

difference, Q = order of seasonal Moving 

Average (SMA).  

 

Without differencing operations, the model 

can be written as:  

 

Φ (BS) φ (B) (xt - µ) = Θ (BS) θ (B) wt(1) 

 

The non-seasonal components are: 

 

AR: φ (B) = 1 − φ1B −...− φpBp (2) 

MA:θ (B) = 1 + θ1B +...+ θqBq (3) 

 

The seasonal components are: 

 

Seasonal AR: Φ (BS) = 1 − Φ1BS −... – 

ΦPBPS (4) 

 

Seasonal MA: Θ (BS) = 1 + Θ1BS +...+ 

ΘQBQS (5) 

 

Box and Jenkins bases the model selection on 

four stages i.e. Identification, Estimation, 

Diagnostic checking and Forecasting.  

 

Identification 
 

The autoregressive orders p and P and the 

Moving Average orders q and Q will be 

decided partly by visual inspection of the 

correlogram and partly by minimizing 

information criterions with the use of the HK-

algorithm. Identification of the model was 

concerned with deciding the appropriate 

values of (p, d, q) (P, D, Q). It was done by 

observing Auto Correlation Function (ACF) 

and Partial Auto Correlation Function (PACF) 

values up to 24 lags. The HK-algorithm then 

performs an iterative procedure to select the 

model that minimizes the value of each 

criterion (AIC, RMSE, etc.). 

 

Estimation of parameters 

 

After tentatively identifying the suitable 

model, next step is to obtain Least Square 

Estimates of the parameters such that the error 

sum of squares is minimum. 

 

S (θ, φ) = et
2
 (θ, φ) (6) 

 

where, t = 1, 2, 3, . . . n. 

 

There are fundamentally two ways of getting 

estimates for such parameters i.e. Trial and 

error and Interactive method. 

 

Diagnostic checking 

 

Examining ACF and PACF of residuals may 

show an adequacy or inadequacy of the 

model. If it shows random residuals, then it 

indicates that the tentatively identified model 

was adequate. Some of the diagnostic checks 

are over fitting method, Residual check, Box-

Ljung test and minimum Akike Information 

Coefficient (AIC). In this analysis, we have 

used the Residual check and Box-Ljung test. 

 

Residual check 

 

The residuals should behave like Gaussian 

white noise, that is appear random, 

homoscedastic and normal (Box and Jenkins, 

1976, p. 324).The first part is a graphical 

check of the standardized residuals, meaning 

the residuals divided with their standard 

deviation. These should look random and 

homoscedastic. The number of outliers is also 

important where a good indication would be 

that about 95 percent of the residuals lie 

inside their 95 percent confidence interval 
 1.96. 
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The Box-Ljung test 

 

The Ljung and Box (BL) test was developed 

in 1978 and is used to test the randomness of 

the residuals. For this test the first step is to 

extract the residuals t̂ for the fitted model. 

The residuals are then used to derive the 

sample autocorrelations of the residuals with 

the following equation  

 












T

t

t

T

kt

ktt

kr

1

2

1

ˆ
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ˆ





, k = 1, 2, ….  (7) 

 

This equation is used until a set of 

autocorrelations mrrr ˆ,.....,ˆ,ˆ 21 have been 

obtained. These are then used to test the null 

hypothesis of serially independent residuals 

versus the alternative hypothesis that they are 

not serially independent with the following 

test statistic Ljung and Box 1978, p.298. 

 

 

 

 (8) 

 

which for an appropriate model was shown to 

be asymptotically distributed as a 
)(2

1 m   

where m is the number of lagged 

autocorrelations included and α is the selected 

significance level.  

 

The number of lags should be a function of T 

for example the truncated value of m = T  

and that the degrees of freedom should be 

corrected for SARIMA models to df 

= QPqpm  . The critical value is 

included in (Ljung and Box, 1978) and then 

compared to the value of the test statistic. The 

null hypothesis of randomness is rejected for 

large values of the test statistic. 

 

Forecasting 

 

The principal objective of developing 

SARIMA model for a variable is to generate 

post sample period forecast for the same 

variable. For instance, let us consider the 

given Seasonal ARIMA (0, 1, 1) (1, 0, 1)12we 

can forecast the next step which is given by 

Cryer and Chan as: 

 

The one step ahead forecast from the origin t 

is given by 

 

zt - zt-1 = Φ (zt-12 – zt-13) + εt – θεt-1 – Φ εt-12 + 

θεt-13 (9) 
 

zt = zt-1 + Φ zt-12 – Φ zt-13 + εt – θεt-1 – Φ εt-12 + 

θεt-13       (10) 
 

The one step ahead forecast from the origin s 

given by  
 

ẑ t+1 = zt+ Φ zt-11– Φ zt-12 – θεt – Φ εt-11 + θεt-12

 (11) 
 

The next step is 

 
ẑ t+1 = ẑ t+1 + Φ zt-10– Φ zt-11 – Φ εt-10 + θεt-11

 (12) 

 

and so on. The noise term ε13, ε12, ε11, ….., 

ε1(as residuals) will enter into the forecasts 

for lead times l = 1, 2, …,13, but for l > 13 the 

autoregressive part of the model takes over; 

 
ẑ t+l = ẑ t-l+1 + Φ zt+l-12– Φ zt+l-13, for l > 13(13) 

 

The accuracy of forecasts for both Ex-ante 

and Ex-post is tested by using R-square, 

RMSE, MAPE, etc... 

total
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Results and discussion 

 

The tentative models were selected by careful 

examination of ACF and PACF values up to 

24 lags. The Moving Average (MA) terms 

and Auto Regressive (AR) terms were found 

with the help of ACF and PACF respectively. 

The MA terms were determined by number of 

non- zero coefficients in ACF and the AR 

terms were determined by number of non-

zero coefficients in PACF (Table 1). Based on 

highest
2

R  and lowest RMSE, SARIMA (3, 0, 

3) (3, 0, 2)12& (2, 2, 2) (1, 0, 1)12 were the 

best models for forecasting the tomatoarrivals 

and prices whereas (1, 2, 3) (1, 2, 2)12& (2, 0, 

3) (2, 0, 3)12were the best model for 

forecasting the onionarrivals and prices in 

Koyambedu (Chennai) market respectively. 

The values of all identified models were 

shown in Table 2 and parameter values in 

Table 3. The adequacy of the models can be 

found out by residual analysis. One basic 

assumption in ARIMA is the residuals should 

be independent and normal distributed. The p 

values of Ljung-box test for tomato arrivals 

and prices were 0.20 and 0.41 respectively 

(>0.05) indicates the independence of 

residuals. The p values of Ljung-box test for 

onion arrivals and prices were 0.213 and 

0.830 respectively (>0.05) indicates the 

independence of residuals. Most of the 

residuals of ACF and PACF in Figures 1 to 4 

are fall within 3σ limit indicate the best fitted 

model (i.e. residual are white noise). 

 

The ex-post forecasted values for vegetable 

arrivals and prices were presented in Table 4 

and Figures 5 to 8. 

 

Table.1 ACF and PACF to identify the orders of SARMA (p, q) (P, Q)s, only positive lags are of 

interest 

 

Terms ACF PACF 

AR(p) Exponentially decreasing or damped 

sine wave 

Spikes to lag p then zero 

MA(q) Spikes to lag q then zero Exponentially decreasing or damped 

sine wave 

ARMA(p, q) Exponentially decreasing or damped 

sine wave after q - p lags 

Exponentially decreasing or damped 

sine wave after p - q lags 

SAR(P)s Exponentially decreasing or damped 

sine wave for all lags times s 

Spikes for lag Ps then zero 

SMA(Q)s Spikes for lag Qs then zero Exponentially decreasing or damped 

sine wave for all lags times  

SARMA(P, Q)s Exponentially decreasing or damped 

sine wave for all lags times s after 

lags (Q - P)s 

Exponentially decreasing or damped 

sine wave for all lags times s after lags 

(P - Q)s 
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Table.2 The tentative SARIMA models for vegetable arrivals and prices in Koyambedu market 

 
Type Models 

2

R  RMSE 

Tomato arrivals (1, 0, 3) (2, 0, 2)12 0.713 19571.523 

(2, 0, 3) (1, 0, 3)12 0.697 19674.257 

(3, 0, 3) (3, 0, 2)12 0.723 19537.798 

Tomato prices (2, 2, 2) (1, 0, 2)12 0.730 1021.575 

(2, 2, 2) (1, 0, 1)12 0.731 1015.079 

(2, 2, 2) (1, 0, 3)12 0.729 1031.299 

Onion arrivals (1, 2, 2) (1, 2, 3)12 0.874 51707.021 

(1, 2, 3) (1, 2, 2)12 0.876 51349.099 

(1, 2, 3) (1, 2, 3)12 0.875 51718.364 

Onion prices (2, 0, 3) (2, 0, 3)12 0.753 1023.359 

(2, 0, 1) (2, 0, 3)12 0.742 1033.758 

(3, 0, 2) (2, 0, 3)12 0.748 1035.061 

    

 

Table.3 SARIMA parameters for vegetable arrivals and prices in Koyembedu market 

 
Tomato Onion 

Model Component Estimate Model Component Estimate 

Arrivals 

(3, 0, 3) 

 (3, 0, 2)12 

Constant Lag 95590.316  

 

 

 

Arrivals 

(1, 2, 3)  

(1, 2, 2)12 

Constant Lag 144820.32 

AR 1 0.700 AR 1 -0.874 

 2 0.171 MA 1 0.696 

 3 -0.145  2 0.972 

MA 1 0.577  3 -0.723 

 2 0.424 SAR 1 -0.064 

 3 -0.492 SMR 1 1.325 

SAR 1 0.205  2 -0.325 

 2 -0.194  

 

 

 

Prices 

(2, 0, 3 

 (2, 0, 3)12 

Constant  3316.183 

 3 -0.059 AR 1 -0.200 

SMR 1 -0.269  2 0.452 

 2 -0.841 MA 1 -1.326 

Prices 

(2, 2, 2) 

 (1, 0, 1)12 

Constant  1872.733  2 -0.631 

AR 1 0.617  3 -0.259 

 2 -0.537 SAR 1 -1.863 

MA 1 1.789  2 -0.973 

 2 -0.789 SMR 1 2.020 

SAR 1 0.633  2 -1.315 

SMR 1 0.153  3 0.237 
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Table.4 Forecasted values for vegetable arrivals and prices  

 
Forecasted 

Months (2019) 

Tomato Onion 

Arrivals (qtls) Prices (Rs/qtl) Arrivals (qtls) Prices (Rs/qtl) 

January 98690 1966 162534 2338 

February 106369 1471 154697 2537 

March 99296 678 136522 3439 

April 83343 464 102567 3305 

May 102076 717 134123 3949 

June 98478 1229 136852 4211 

 

 

 

 
Figure.1 Residual ACF and PACF for 

tomato arrivals 

 

 
Figure.2 Residual ACF and PACF for 

onion arrivals 

 
Figure.3 Residual ACF and PACF for 

tomato prices  

 
Figure.4 Residual ACF and PACF for 

onion prices  
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Figure.5 Ex- post forecast of tomato arrivals 

 

Fi

Figure.6 Ex- post forecast of tomato Prices  

 

 
Figure.7 Ex- post forecast of onion arrivals 
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Figure.8 Ex- post forecast of onion Prices 

 

 

It is concluded, actual and forecasted values 

were often similar because of high 

fluctuations in tomato arrivals. Tomato 

arrivals were high in the month of February 

(106369 qtls) and May among the forecasted 

values. The actual and predicted values of 

tomato prices were similar to each other. 

There was a peak in tomato prices (Rs 

1966/qtl) in the Month of January among the 

forecasted values. In onion, actual and 

forecasted values for arrivals and prices were 

similar to each other. The peaks of arrivals 

(162534 qtls) were noticed in the Month of 

January whereas prices (Rs 4211 /qtl) were 

high in June among the forecasted values. The 

above mentioned SARIMA models will be 

useful for forecasting the future prices and 

arrivals. Policies makers will make use of 

these forecasting to formulate sound policies 

for the benefit of both producers and 

consumers. 
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